Variation and diversity in Homo erectus: a 3D geometric morphometric analysis of the temporal bone.
نویسندگان
چکیده
Although the level of taxonomic diversity within the fossil hominin species Homo erectus (sensu lato) is continually debated, there have been relatively few studies aiming to quantify the morphology of this species. Instead, most researchers have relied on qualitative descriptions or the evaluation of nonmetric characters, which in many cases display continuous variation. Also, only a few studies have used quantitative data to formally test hypotheses regarding the taxonomic composition of the "erectus" hypodigm. Despite these previous analyses, however, and perhaps in part due to these varied approaches for assessing variation within specimens typically referred to H. erectus (sensu lato) and the general lack of rigorous statistical testing of how variation within this taxon is partitioned, there is currently little consensus regarding whether this group is a single species, or whether it should instead be split into separate temporal or geographically delimited taxa. In order to evaluate possible explanations for variation within H. erectus, we tested the general hypothesis that variation within the temporal bone morphology of H. erectus is consistent with that of a single species, using great apes and humans as comparative taxa. Eighteen three-dimensional (3D) landmarks of the temporal bone were digitized on a total of 520 extant and fossil hominid crania. Landmarks were registered by Generalized Procrustes Analysis, and Procrustes distances were calculated for comparisons of individuals within and between the extant taxa. Distances between fossil specimens and between a priori groupings of fossils were then compared to the distances calculated within the extant taxa to assess the variation within the H. erectus sample relative to that of known species, subspecies, and populations. Results of these analyses indicate that shape variation within the entire H. erectus sample is generally higher than extant hominid intraspecific variation, and putative H. ergaster specimens are significantly different from other specimens in H. erectus (sensu lato). However, shape distances within geographical groups of H. erectus are also high, and OH 9 and Dmanisi 2280 are morphologically distinct from the Koobi Fora specimens that are sometimes classified as H. ergaster. These findings suggest that, although H. erectus may be composed of multiple species, the differentiation is complex, and specimens cannot easily be grouped geographically or chronologically. Consequently, more complicated scenarios seeking to explain the observed variation within H. erectus must be considered.
منابع مشابه
The taxonomic implications of cranial shape variation in Homo erectus.
The taxonomic status of Homo erectus sensu lato has been a source of debate since the early 1980s, when a series of publications suggested that the early African fossils may represent a separate species, H. ergaster. To gain further resolution regarding this debate, 3D geometric morphometric data were used to quantify overall shape variation in the cranial vault within H. erectus using a new me...
متن کاملCharaCteristiCs and variation of the temporal bone pneumatization in asian Homo erectus
The temporal bone is used frequently to identify taxonomic affinities of genus Homo fossils based on external morphological features. In the meantime, the temporal bone pneumatization has rarely been examined, particularly in Asian Homo erectus. We put forward a comparative morphological and quantitative analysis in Asian Homo erectus from the sites of Ngandong, Sambungmacan, and Zhoukoudian, a...
متن کاملTaxonomic identification of Lower Pleistocene fossil hominins based on distal humeral diaphyseal cross-sectional shape
The coexistence of multiple hominin species during the Lower Pleistocene has long presented a challenge for taxonomic attribution of isolated postcrania. Although fossil humeri are well-suited for studies of hominin postcranial variation due to their relative abundance, humeral articular morphology has thus far been of limited value for differentiating Paranthropus from Homo. On the other hand,...
متن کاملMorphological diversity in three species of Chubs (Squalius spp.) populations in Iranian Basins
. In this study, morphological variation of three species of Squalius in Iranian basins was studied. For this purpose, 709 specimens were captured from the Caspian Sea, the Urmia Lake, the Namak Lake and the Tigris basin. After anesthetizing in clove oil solution and fixing in 10% neutralized formalin, specimens were transferred to the Isfahan University of Technology Ichthyology Museum (IUT-IM...
متن کاملThe brain of LB1, Homo floresiensis.
The brain of Homo floresiensis was assessed by comparing a virtual endocast from the type specimen (LB1) with endocasts from great apes, Homo erectus, Homo sapiens, a human pygmy, a human microcephalic, specimen number Sts 5 (Australopithecus africanus), and specimen number WT 17000 (Paranthropus aethiopicus). Morphometric, allometric, and shape data indicate that LB1 is not a microcephalic or ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of human evolution
دوره 53 1 شماره
صفحات -
تاریخ انتشار 2007